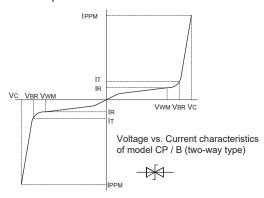
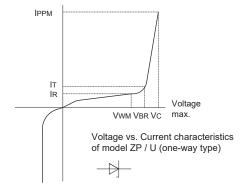
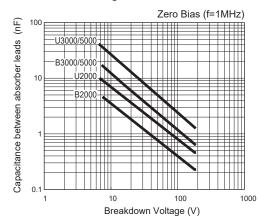


SURGE PROTECTIVE DEVICES


OKAYA I


Features

- Fast response to rapid surge (10-12 sec).
- Almost no performance degradation against repetitive surge.
- Very low internal resistance during operation.
- Very small leak current.


Applications

- Air conditioners, Amusement machines, Telecommunication equipments, Data transmitters.
- Electrical Specifications

Typical capacitance between absorber's lead vs. Breakdown voltage

Nominal Breakdown Voltage (VBR)

Voltage at which avalanche current may begin to flow, normally the voltage between the surge absorber's leads when 1mA of current is applied.

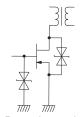
Maximum Working Voltage (VWM)

A maximun voltage that can be applied to the surge absorber continuously.

Leakage Current (IR)

A maximum current flowing through the surge absorber when the standoff voltage is applied to the surge absorber.

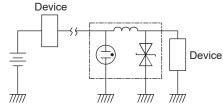
Rated Peak Impulse Current (IPPM)

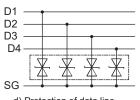

A maximum surge current that can flow through the surge absorber, but not repetitively. The waveform in the table is 8/20µsec.

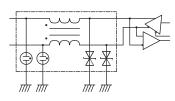
Clamping Voltage (VC)


A maximum voltage that may be generated between the surge absorber's leads when the peak surge current is applied to the surge absorber.

Rated Peak Impulse Power Dissipation (PPPM) (PPPM)= (VPPM) x (VC)


Applications


a) Protection against switching surge


b) Protection of DC/CD converter

c) Protection of interface RS485A from lightning surge (surge absorber'-component surge protection)

d) Protection of data line (arrayed surge absorbers)

e) Protection of RS-485-A lightning surge